Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 503
Filter
1.
Genesis ; 62(3): e23602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38721990

ABSTRACT

Cilia play a key role in the regulation of signaling pathways required for embryonic development, including the proper formation of the neural tube, the precursor to the brain and spinal cord. Forward genetic screens were used to generate mouse lines that display neural tube defects (NTD) and secondary phenotypes useful in interrogating function. We describe here the L3P mutant line that displays phenotypes of disrupted Sonic hedgehog signaling and affects the initiation of cilia formation. A point mutation was mapped in the L3P line to the gene Rsg1, which encodes a GTPase-like protein. The mutation lies within the GTP-binding pocket and disrupts the highly conserved G1 domain. The mutant protein and other centrosomal and IFT proteins still localize appropriately to the basal body of cilia, suggesting that RSG1 GTPase activity is not required for basal body maturation but is needed for a downstream step in axonemal elongation.


Subject(s)
Cilia , Neural Tube Defects , Neural Tube , Animals , Cilia/metabolism , Cilia/genetics , Mice , Neural Tube/metabolism , Neural Tube/embryology , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Signal Transduction , Point Mutation
2.
Curr Top Dev Biol ; 159: 168-231, 2024.
Article in English | MEDLINE | ID: mdl-38729676

ABSTRACT

The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Neural Tube , Signal Transduction , Neural Tube/embryology , Neural Tube/metabolism , Neural Tube/cytology , Animals , Body Patterning/genetics , Humans , Gene Regulatory Networks , Spinal Cord/embryology , Spinal Cord/cytology , Spinal Cord/metabolism , Cell Differentiation , Cell Movement
3.
Dev Biol ; 511: 26-38, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38580174

ABSTRACT

In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.


Subject(s)
Neural Tube , Spinal Cord , Animals , Spinal Cord/embryology , Neural Tube/embryology , Neural Crest/embryology , Neural Crest/cytology , Neural Crest/physiology , Cell Differentiation/physiology , Neuroglia/physiology , Neuroepithelial Cells/cytology , Neuroepithelial Cells/physiology , Humans
4.
Nature ; 628(8007): 391-399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408487

ABSTRACT

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Subject(s)
Body Patterning , Microfluidics , Neural Tube , Humans , Cell Culture Techniques, Three Dimensional , Cell Differentiation , Neural Crest/cytology , Neural Crest/embryology , Neural Tube/cytology , Neural Tube/embryology , Pluripotent Stem Cells/cytology , Prosencephalon/cytology , Prosencephalon/embryology , Spinal Cord/cytology , Spinal Cord/embryology
5.
Brain Behav Evol ; 99(1): 45-68, 2024.
Article in English | MEDLINE | ID: mdl-38342091

ABSTRACT

BACKGROUND: The phylotypic or intermediate stages are thought to be the most evolutionary conserved stages throughout embryonic development. The contrast with divergent early and later stages derived from the concept of the evo-devo hourglass model. Nonetheless, this developmental constraint has been studied as a whole embryo process, not at organ level. In this review, we explore brain development to assess the existence of an equivalent brain developmental hourglass. In the specific case of vertebrates, we propose to split the brain developmental stages into: (1) Early: Neurulation, when the neural tube arises after gastrulation. (2) Intermediate: Brain patterning and segmentation, when the neuromere identities are established. (3) Late: Neurogenesis and maturation, the stages when the neurons acquire their functionality. Moreover, we extend this analysis to other chordates brain development to unravel the evolutionary origin of this evo-devo constraint. SUMMARY: Based on the existing literature, we hypothesise that a major conservation of the phylotypic brain might be due to the pleiotropy of the inductive regulatory networks, which are predominantly expressed at this stage. In turn, earlier stages such as neurulation are rather mechanical processes, whose regulatory networks seem to adapt to environment or maternal geometries. The later stages are also controlled by inductive regulatory networks, but their effector genes are mostly tissue-specific and functional, allowing diverse developmental programs to generate current brain diversity. Nonetheless, all stages of the hourglass are highly interconnected: divergent neurulation must have a vertebrate shared end product to reproduce the vertebrate phylotypic brain, and the boundaries and transcription factor code established during the highly conserved patterning will set the bauplan for the specialised and diversified adult brain. KEY MESSAGES: The vertebrate brain is conserved at phylotypic stages, but the highly conserved mechanisms that occur during these brain mid-development stages (Inducing Regulatory Networks) are also present during other stages. Oppositely, other processes as cell interactions and functional neuronal genes are more diverse and majoritarian in early and late stages of development, respectively. These phenomena create an hourglass of transcriptomic diversity during embryonic development and evolution, with a really conserved bottleneck that set the bauplan for the adult brain around the phylotypic stage.


Subject(s)
Biological Evolution , Brain , Neural Tube , Vertebrates , Animals , Vertebrates/embryology , Vertebrates/growth & development , Brain/embryology , Brain/growth & development , Neural Tube/embryology , Neurogenesis/physiology , Neurulation/physiology
6.
Sci Adv ; 9(24): eadf6927, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37315133

ABSTRACT

Correct notochord and neural tube (NT) formation is crucial to the development of the central nervous system and midline structures. Integrated biochemical and biophysical signaling controls embryonic growth and patterning; however, the underlying mechanisms remain poorly understood. Here, we took the opportunities of marked morphological changes during notochord and NT formation and identified both necessary and sufficient roles of Yap, a key mechanosensor and mechanotransducer, in biochemical signaling activation during formation of notochord and floor plate, the ventral signaling centers that pattern the dorsal-ventral axis of NT and the surrounding tissues. We showed that Yap activation by a gradient of mechanical stress and tissue stiffness in the notochord and ventral NT induces FoxA2 and Shh expression. Hedgehog signaling activation rescued NT patterning defects caused by Yap deficiency, but not notochord formation. Therefore, mechanotransduction via Yap activation acts in feedforward mechanisms to induce FoxA2 expression for notochord formation and activate Shh expression for floor plate induction by synergistically interacting with FoxA2.


Subject(s)
Hedgehog Proteins , Hepatocyte Nuclear Factor 3-beta , Mechanotransduction, Cellular , YAP-Signaling Proteins , Central Nervous System/embryology , Embryonic Development , Neural Tube/embryology
7.
Nature ; 612(7941): 732-738, 2022 12.
Article in English | MEDLINE | ID: mdl-36517595

ABSTRACT

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Subject(s)
Gastrulation , Macaca fascicularis , Organogenesis , Single-Cell Analysis , Animals , Humans , Mice , Gastrulation/genetics , Macaca fascicularis/embryology , Macaca fascicularis/genetics , Organogenesis/genetics , Embryoid Bodies , Gene Expression Profiling , Primitive Streak/cytology , Primitive Streak/embryology , Neural Tube/cytology , Neural Tube/embryology , Neural Crest/cytology , Neural Crest/embryology , Hippo Signaling Pathway , Mesoderm/cytology , Mesoderm/embryology , Stem Cells
8.
Nature ; 610(7930): 143-153, 2022 10.
Article in English | MEDLINE | ID: mdl-36007540

ABSTRACT

Embryonic stem (ES) cells can undergo many aspects of mammalian embryogenesis in vitro1-5, but their developmental potential is substantially extended by interactions with extraembryonic stem cells, including trophoblast stem (TS) cells, extraembryonic endoderm stem (XEN) cells and inducible XEN (iXEN) cells6-11. Here we assembled stem cell-derived embryos in vitro from mouse ES cells, TS cells and iXEN cells and showed that they recapitulate the development of whole natural mouse embryo in utero up to day 8.5 post-fertilization. Our embryo model displays headfolds with defined forebrain and midbrain regions and develops a beating heart-like structure, a trunk comprising a neural tube and somites, a tail bud containing neuromesodermal progenitors, a gut tube, and primordial germ cells. This complete embryo model develops within an extraembryonic yolk sac that initiates blood island development. Notably, we demonstrate that the neurulating embryo model assembled from Pax6-knockout ES cells aggregated with wild-type TS cells and iXEN cells recapitulates the ventral domain expansion of the neural tube that occurs in natural, ubiquitous Pax6-knockout embryos. Thus, these complete embryoids are a powerful in vitro model for dissecting the roles of diverse cell lineages and genes in development. Our results demonstrate the self-organization ability of ES cells and two types of extraembryonic stem cells to reconstitute mammalian development through and beyond gastrulation to neurulation and early organogenesis.


Subject(s)
Embryo, Mammalian , Gastrulation , Models, Biological , Neurulation , Organogenesis , Animals , Cell Lineage , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Stem Cells/cytology , Endoderm/cytology , Endoderm/embryology , Heart/embryology , Mesencephalon/embryology , Mice , Neural Tube/embryology , PAX6 Transcription Factor/deficiency , PAX6 Transcription Factor/genetics , Prosencephalon/embryology , Somites/embryology
9.
Proc Natl Acad Sci U S A ; 119(20): e2117075119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35561223

ABSTRACT

Neurulation is the process in early vertebrate embryonic development during which the neural plate folds to form the neural tube. Spinal neural tube folding in the posterior neuropore changes over time, first showing a median hinge point, then both the median hinge point and dorsolateral hinge points, followed by dorsolateral hinge points only. The biomechanical mechanism of hinge point formation in the mammalian neural tube is poorly understood. Here we employ a mechanical finite element model to study neural tube formation. The computational model mimics the mammalian neural tube using microscopy data from mouse and human embryos. While intrinsic curvature at the neural plate midline has been hypothesized to drive neural tube folding, intrinsic curvature was not sufficient for tube closure in our simulations. We achieved neural tube closure with an alternative model combining mesoderm expansion, nonneural ectoderm expansion, and neural plate adhesion to the notochord. Dorsolateral hinge points emerged in simulations with low mesoderm expansion and zippering. We propose that zippering provides the biomechanical force for dorsolateral hinge point formation in settings where the neural plate lateral sides extend above the mesoderm. Together, these results provide a perspective on the biomechanical and molecular mechanism of mammalian spinal neurulation.


Subject(s)
Neural Tube , Neurulation , Animals , Ectoderm/embryology , Humans , Mice , Neural Plate/embryology , Neural Tube/embryology , Neurulation/physiology , Notochord/embryology
10.
Arch Gynecol Obstet ; 306(4): 983-989, 2022 10.
Article in English | MEDLINE | ID: mdl-35048180

ABSTRACT

PURPOSE: One of the most common malformations of the central nervous system is related to embryonic neural tube alterations. We hypothesized that anencephaly affects the development of the vagina during the human second trimester of pregnancy. Our study compared the biometric parameters of the vagina in human female fetuses with neural tube defects. METHODS: In our study, 34 female fetuses were analyzed, 22 normal and 12 anencephalic, aged between 12 and 22 weeks post conception (WPC). After dissection of the pelvis and individualization of the genital tract, we evaluated the length and width of the vagina using the Image J software. We compared the means statistically using the Wilcoxon-Mann-Whitney test and performed linear regression. RESULTS: We do not identify statistical significance between the groups for the measurements of vaginal length (Control 3.12-18.33 mm/mean = 9.08 mm/SD +  - 3.77 vs. Anencephalic 2.91-13.10 mm/mean = 7.24 mm/SD +  - 2.28, p = 0.3469) and vaginal width (Control 1.04-4.86 mm/mean = 2.71 mm/SD + - 0.94 vs. Anencephalic 1.35-3.17 mm/mean = 2.13 mm/SD + - 0.65; p = 0.2503). The linear regression analysis indicated that 78.57% significance was found in the correlations in normocephalic fetuses and 57.14% significance in anencephalic fetuses (12.3-18.6 WPC). CONCLUSIONS: We do not find differences in the length and width of the vagina in anencephalic fetuses but the vaginal length and width shows a lesser tendency of growth in the anencephalic fetuses during the second trimester suggesting that anencephaly can impact the development of the vagina.


Subject(s)
Anencephaly , Neural Tube Defects , Vagina , Female , Fetus , Humans , Infant , Neural Tube/embryology , Neural Tube Defects/complications , Pregnancy , Pregnancy Trimester, Second
11.
Dev Biol ; 483: 39-57, 2022 03.
Article in English | MEDLINE | ID: mdl-34990731

ABSTRACT

Neural crest (NC) cells are a dynamic population of embryonic stem cells that create various adult tissues in vertebrate species including craniofacial bone and cartilage and the peripheral and enteric nervous systems. NC development is thought to be a conserved and complex process that is controlled by a tightly-regulated gene regulatory network (GRN) of morphogens, transcription factors, and cell adhesion proteins. While multiple studies have characterized the expression of several GRN factors in single species, a comprehensive protein analysis that directly compares expression across development is lacking. To address this lack in information, we used three closely related avian models, Gallus gallus (chicken), Coturnix japonica (Japanese quail), and Pavo cristatus (Indian peafowl), to compare the localization and timing of four GRN transcription factors, PAX7, SNAI2, SOX9, and SOX10, from the onset of neurulation to migration. While the spatial expression of these factors is largely conserved, we find that quail NC cells express SNAI2, SOX9, and SOX10 proteins at the equivalent of earlier developmental stages than chick and peafowl. In addition, quail NC cells migrate farther and more rapidly than the larger organisms. These data suggest that despite a conservation of NC GRN players, differences in the timing of NC development between species remain a significant frontier to be explored with functional studies.


Subject(s)
Avian Proteins/genetics , Avian Proteins/metabolism , Cell Movement/genetics , Chickens/genetics , Coturnix/embryology , Coturnix/genetics , Gene Expression Regulation, Developmental , Neural Crest/metabolism , Neurulation/genetics , Animals , Chick Embryo , Chickens/metabolism , Coturnix/metabolism , Female , Gene Regulatory Networks , Neural Crest/embryology , Neural Tube/embryology , Neural Tube/metabolism , Oviparity/genetics , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
12.
Toxins (Basel) ; 13(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34822527

ABSTRACT

Fumonisin B1 (FB1) is among the most common contaminants produced by Fusarium spp. fungus from corns and animal feeds. Although FB1 has been known to cause physical or functional defects of embryos in humans and several animal species such as Syrian hamsters, rabbits, and rodents, little is known about the precise toxicity to the embryos and the underlying mechanisms have not been fully addressed. The present study aimed to investigate its developmental toxicity and potential mechanisms of action on sphingolipid metabolism in Brown Tsaiya Ducks (BTDs) embryos. We examined the effect of various FB1 dosages (0, 10, 20 and 40 µg/embryo) on BTD embryogenesis 72 h post-incubation. The sphingomyelin content of duck embryos decreased (p < 0.05) in the highest FB1-treated group (40 µg). Failure of neural tube closure was observed in treated embryos and the expression levels of a neurulation-related gene, sonic hedgehog (Shh) was abnormally decreased. The sphingolipid metabolism-related genes including N-acylsphingosine amidohydrolase 1 (ASAH1), and ceramide synthase 6 (CERS6) expressions were altered in the treated embryos compared to those in the control embryos. Apparently, FB1 have interfered sphingolipid metabolisms by inhibiting the functions of ceramide synthase and folate transporters. In conclusion, FB1-caused developmental retardation and abnormalities, such as neural tube defects in Brown Tsaiya Duck embryos, as well as are partly mediated by the disruption of sphingolipid metabolisms.


Subject(s)
Ducks/embryology , Fumonisins/adverse effects , Neural Tube/drug effects , Sphingolipids/metabolism , Animals , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/embryology , Embryonic Development/drug effects , Neural Tube/embryology
13.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34610637

ABSTRACT

Many developmental disorders are thought to arise from an interaction between genetic and environmental risk factors. The Hedgehog (HH) signaling pathway regulates myriad developmental processes, and pathway inhibition is associated with birth defects, including holoprosencephaly (HPE). Cannabinoids are HH pathway inhibitors, but little is known of their effects on HH-dependent processes in mammalian embryos, and their mechanism of action is unclear. We report that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) induces two hallmark HH loss-of-function phenotypes (HPE and ventral neural tube patterning defects) in Cdon mutant mice, which have a subthreshold deficit in HH signaling. THC therefore acts as a 'conditional teratogen', dependent on a complementary but insufficient genetic insult. In vitro findings indicate that THC is a direct inhibitor of the essential HH signal transducer smoothened. The canonical THC receptor, cannabinoid receptor-type 1, is not required for THC to inhibit HH signaling. Cannabis consumption during pregnancy may contribute to a combination of risk factors underlying specific developmental disorders. These findings therefore have significant public health relevance.


Subject(s)
Body Patterning/drug effects , Cannabinoid Receptor Agonists/toxicity , Dronabinol/toxicity , Holoprosencephaly/chemically induced , Smoothened Receptor/metabolism , Teratogens/toxicity , Animals , Cannabinoid Receptor Agonists/pharmacology , Cell Adhesion Molecules/genetics , Cells, Cultured , Dronabinol/pharmacology , Female , Mice , Mice, Inbred C57BL , Neural Tube/drug effects , Neural Tube/embryology , Neural Tube/metabolism , Signal Transduction/drug effects , Teratogens/pharmacology
14.
Nature ; 599(7884): 268-272, 2021 11.
Article in English | MEDLINE | ID: mdl-34707290

ABSTRACT

Understanding human organ formation is a scientific challenge with far-reaching medical implications1,2. Three-dimensional stem-cell cultures have provided insights into human cell differentiation3,4. However, current approaches use scaffold-free stem-cell aggregates, which develop non-reproducible tissue shapes and variable cell-fate patterns. This limits their capacity to recapitulate organ formation. Here we present a chip-based culture system that enables self-organization of micropatterned stem cells into precise three-dimensional cell-fate patterns and organ shapes. We use this system to recreate neural tube folding from human stem cells in a dish. Upon neural induction5,6, neural ectoderm folds into a millimetre-long neural tube covered with non-neural ectoderm. Folding occurs at 90% fidelity, and anatomically resembles the developing human neural tube. We find that neural and non-neural ectoderm are necessary and sufficient for folding morphogenesis. We identify two mechanisms drive folding: (1) apical contraction of neural ectoderm, and (2) basal adhesion mediated via extracellular matrix synthesis by non-neural ectoderm. Targeting these two mechanisms using drugs leads to morphological defects similar to neural tube defects. Finally, we show that neural tissue width determines neural tube shape, suggesting that morphology along the anterior-posterior axis depends on neural ectoderm geometry in addition to molecular gradients7. Our approach provides a new route to the study of human organ morphogenesis in health and disease.


Subject(s)
Morphogenesis , Neural Tube/anatomy & histology , Neural Tube/embryology , Organ Culture Techniques/methods , Ectoderm/cytology , Ectoderm/embryology , Humans , Models, Biological , Neural Plate/cytology , Neural Plate/embryology , Neural Tube/cytology , Neural Tube Defects/embryology , Neural Tube Defects/pathology , Regeneration , Stem Cells/cytology
15.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502050

ABSTRACT

To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.


Subject(s)
Cell Differentiation , Mesoderm/cytology , Neural Tube/cytology , Animals , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/physiology , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Mesoderm/embryology , Mesoderm/metabolism , Neural Tube/embryology , Neural Tube/metabolism
16.
Nature ; 596(7870): 92-96, 2021 08.
Article in English | MEDLINE | ID: mdl-34321664

ABSTRACT

The mammalian brain develops through a complex interplay of spatial cues generated by diffusible morphogens, cell-cell interactions and intrinsic genetic programs that result in probably more than a thousand distinct cell types. A complete understanding of this process requires a systematic characterization of cell states over the entire spatiotemporal range of brain development. The ability of single-cell RNA sequencing and spatial transcriptomics to reveal the molecular heterogeneity of complex tissues has therefore been particularly powerful in the nervous system. Previous studies have explored development in specific brain regions1-8, the whole adult brain9 and even entire embryos10. Here we report a comprehensive single-cell transcriptomic atlas of the embryonic mouse brain between gastrulation and birth. We identified almost eight hundred cellular states that describe a developmental program for the functional elements of the brain and its enclosing membranes, including the early neuroepithelium, region-specific secondary organizers, and both neurogenic and gliogenic progenitors. We also used in situ mRNA sequencing to map the spatial expression patterns of key developmental genes. Integrating the in situ data with our single-cell clusters revealed the precise spatial organization of neural progenitors during the patterning of the nervous system.


Subject(s)
Brain/cytology , Brain/embryology , Single-Cell Analysis , Transcriptome , Animals , Animals, Newborn/genetics , Brain/anatomy & histology , Female , Gastrulation/genetics , Male , Mice , Neural Tube/anatomy & histology , Neural Tube/cytology , Neural Tube/embryology
17.
Dev Biol ; 479: 61-76, 2021 11.
Article in English | MEDLINE | ID: mdl-34310923

ABSTRACT

Meis genes are known to play important roles in the hindbrain and neural crest cells of jawed vertebrates. To explore the roles of Meis genes in head development during evolution of vertebrates, we have identified four meis genes in the sea lamprey genome and characterized their patterns of expression and regulation, with a focus on the hindbrain and pharynx. Each of the lamprey meis genes displays temporally and spatially dynamic patterns of expression, some of which are coupled to rhombomeric domains in the developing hindbrain and select pharyngeal arches. Studies of Meis loci in mouse and zebrafish have identified enhancers that are bound by Hox and TALE (Meis and Pbx) proteins, implicating these factors in the direct regulation of Meis expression. We examined the lamprey meis loci and identified a series of cis-elements conserved between lamprey and jawed vertebrate meis genes. In transgenic reporter assays we demonstrated that these elements act as neural enhancers in lamprey embryos, directing reporter expression in appropriate domains when compared to expression of their associated endogenous meis gene. Sequence alignments reveal that these conserved elements are in similar relative positions of the meis loci and contain a series of consensus binding motifs for Hox and TALE proteins. This suggests that ancient Hox and TALE-responsive enhancers regulated expression of ancestral vertebrate meis genes in segmental domains in the hindbrain and have been retained in the meis loci during vertebrate evolution. The presence of conserved Meis, Pbx and Hox binding sites in these lamprey enhancers links Hox and TALE factors to regulation of lamprey meis genes in the developing hindbrain, indicating a deep ancestry for these regulatory interactions prior to the divergence of jawed and jawless vertebrates.


Subject(s)
Lampreys/genetics , Neural Tube/embryology , Rhombencephalon/embryology , Animals , Binding Sites , Body Patterning/genetics , Conserved Sequence , Enhancer Elements, Genetic , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Genes, Homeobox/genetics , Homeodomain Proteins/metabolism , Lampreys/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Neural Crest/metabolism , Neural Tube/metabolism , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Rhombencephalon/metabolism , Transcription Factors/metabolism
18.
Curr Top Dev Biol ; 145: 41-60, 2021.
Article in English | MEDLINE | ID: mdl-34074535

ABSTRACT

Planar cell polarity (PCP) refers to the coordinated polarization of cells within the plane of a tissue. PCP is a controlled by a group of conserved proteins organized in a specific signaling pathway known as the PCP pathway. A hallmark of PCP signaling is the asymmetric localization of "core" PCP protein complexes at the cell cortex, although endogenous PCP cues needed to establish this asymmetry remain unknown. While the PCP pathway was originally discovered as a mechanism directing the planar organization of Drosophila epithelial tissues, subsequent studies in Xenopus and other vertebrates demonstrated a critical role for this pathway in the regulation of actomyosin-dependent morphogenetic processes, such as neural tube closure. Large size and external development of amphibian embryos allows live cell imaging, placing Xenopus among the best models of vertebrate neurulation at the molecular, cellular and organismal level. This review describes cross-talk between core PCP proteins and actomyosin contractility that ultimately leads to tissue-scale movement during neural tube closure.


Subject(s)
Actomyosin/metabolism , Cell Polarity , Models, Animal , Neural Tube/embryology , Neurulation , Xenopus laevis/embryology , Animals , Humans
19.
Development ; 148(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34142711

ABSTRACT

Axial elongation of the neural tube is crucial during mammalian embryogenesis for anterior-posterior body axis establishment and subsequent spinal cord development, but these processes cannot be interrogated directly in humans as they occur post-implantation. Here, we report an organoid model of neural tube extension derived from human pluripotent stem cell (hPSC) aggregates that have been caudalized with Wnt agonism, enabling them to recapitulate aspects of the morphological and temporal gene expression patterns of neural tube development. Elongating organoids consist largely of neuroepithelial compartments and contain TBXT+SOX2+ neuro-mesodermal progenitors in addition to PAX6+NES+ neural progenitors. A critical threshold of Wnt agonism stimulated singular axial extensions while maintaining multiple cell lineages, such that organoids displayed regionalized anterior-to-posterior HOX gene expression with hindbrain (HOXB1) regions spatially distinct from brachial (HOXC6) and thoracic (HOXB9) regions. CRISPR interference-mediated silencing of TBXT, a Wnt pathway target, increased neuroepithelial compartmentalization, abrogated HOX expression and disrupted uniaxial elongation. Together, these results demonstrate the potent capacity of caudalized hPSC organoids to undergo axial elongation in a manner that can be used to dissect the cellular organization and patterning decisions that dictate early human nervous system development.


Subject(s)
Body Patterning , Neural Tube/embryology , Organogenesis , Organoids , Body Patterning/drug effects , Cell Differentiation , Embryonic Development , Gene Expression Regulation, Developmental , Humans , Mesoderm/embryology , Mesoderm/metabolism , Neurogenesis/drug effects , Organogenesis/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Wnt Signaling Pathway/drug effects
20.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33941697

ABSTRACT

Gap closure is a common morphogenetic process. In mammals, failure to close the embryonic hindbrain neuropore (HNP) gap causes fatal anencephaly. We observed that surface ectoderm cells surrounding the mouse HNP assemble high-tension actomyosin purse strings at their leading edge and establish the initial contacts across the embryonic midline. Fibronectin and laminin are present, and tensin 1 accumulates in focal adhesion-like puncta at this leading edge. The HNP gap closes asymmetrically, faster from its rostral than caudal end, while maintaining an elongated aspect ratio. Cell-based physical modeling identifies two closure mechanisms sufficient to account for tissue-level HNP closure dynamics: purse-string contraction and directional cell motion implemented through active crawling. Combining both closure mechanisms hastens gap closure and produces a constant rate of gap shortening. Purse-string contraction reduces, whereas crawling increases gap aspect ratio, and their combination maintains it. Closure rate asymmetry can be explained by asymmetric embryo tissue geometry, namely a narrower rostral gap apex, whereas biomechanical tension inferred from laser ablation is equivalent at the gaps' rostral and caudal closure points. At the cellular level, the physical model predicts rearrangements of cells at the HNP rostral and caudal extremes as the gap shortens. These behaviors are reproducibly live imaged in mouse embryos. Thus, mammalian embryos coordinate cellular- and tissue-level mechanics to achieve this critical gap closure event.


Subject(s)
Embryo, Mammalian/metabolism , Neural Crest/metabolism , Neural Tube/metabolism , Rhombencephalon/metabolism , Anencephaly/embryology , Anencephaly/genetics , Anencephaly/metabolism , Animals , Cadherins/metabolism , Embryo, Mammalian/embryology , Female , Fibronectins/metabolism , Laminin/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal/methods , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Crest/embryology , Neural Tube/embryology , Rhombencephalon/embryology , Time-Lapse Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...